Chemia defektów punktowych (III) Równowagi defektowe w związkach o złożonej strukturze defektów

http://home.agh.edu.pl/~grzesik

#### DEFEKTY PUNKTOWE W ZWIĄZKACH O ZŁOŻONEJ STRUKTURZE DEFEKTÓW

Część związków jonowych, np. tlenków i siarczków, wykazuje złożoną strukturę defektów punktowych. Ponieważ najczęściej zdefektowanie jest ograniczone do podsieci kationowej, zatem złożona struktura defektów polega na występowaniu w danej temperaturze, przy stosunkowo niskich ciśnieniach utleniacza kationów międzywęzłowych oraz quasi-swobodnych elektronów jako defektów dominujących, natomiast przy wyższych ciśnieniach przeważają wakancje kationowe i dziury elektronowe.

Przykłady: Cr<sub>2</sub>O<sub>3</sub>, ZnO, MnS

#### Schemat zdefektowania w ZnO



#### RÓWNOWAGI DEFEKTOWE W M<sub>1+y</sub>X

Prezentowana analiza oparta jest na założeniu całkowitej jonizacji defektów.

$$M_{M}^{x} + X_{X}^{x} \Leftrightarrow M_{i}^{\bullet\bullet} + 2e' + \frac{1}{2}X_{2(g)}$$

$$K_{i} = [M_{i}^{\bullet\bullet}] \cdot [e']^{2} \cdot p_{X_{2}}^{1/2}$$

$$2[M_{i}^{\bullet\bullet}] = [e']$$

$$[M_{i}^{\bullet\bullet}] = \frac{1}{2}[e'] = (\frac{1}{4}K_{i})^{1/3} \cdot p_{X_{2}}^{-1/6}$$

$$\frac{1}{2} X_{2(g)} \Leftrightarrow V_{M}'' + 2h^{\bullet} + X_{X}^{X}$$

$$\mathbf{K}_{\mathbf{v}} = [\mathbf{V}_{\mathbf{M}}''] \cdot [\mathbf{h}^{\bullet}]^2 \cdot \mathbf{p}_{\mathbf{X}_2}^{-1/2}$$

$$2[V_{M}''] = [h^{\bullet}]$$

$$[V_{M}''] = \frac{1}{2} [h^{\bullet}] = (\frac{1}{4} K_{v})^{1/3} \cdot p_{X_{2}}^{1/6}$$

#### RÓWNOWAGI DEFEKTOWE W POBLIŻU SKŁADU STECHIOMETRYCZNEGO (MX)

W pobliżu składu stechiometrycznego możliwe są dwa przypadki graniczne:

- przewaga samoistnego zdefektowania elektronowego nad jonowym
- przewaga samoistnego zdefektowania jonowego nad elektronowym

RÓWNOWAGI DEFEKTOWE W POBLIŻU SKŁADU STECHIOMETRYCZNEGO (MX) – przewaga samoistnego zdefektowania elektronowego



RÓWNOWAGI DEFEKTOWE W POBLIŻU SKŁADU STECHIOMETRYCZNEGO (MX) – przewaga samoistnego zdefektowania jonowego

 $M_{M}^{X} \Leftrightarrow M_{i}^{\bullet \bullet} + V_{M}''$  $K_{F} \Leftrightarrow [V_{M}''] | M_{i}^{\bullet \bullet} | \qquad \Rightarrow [V_{M}''] = | M_{i}^{\bullet \bullet} | = K_{F}^{1/2} \qquad >> [e'], \ |h^{\bullet}|$  $\mathbf{K}_{\mathbf{v}} = [\mathbf{V}_{\mathbf{M}}^{"}] \cdot [\mathbf{h}^{\bullet}]^2 \cdot \mathbf{p}_{\mathbf{X}_2}^{-1/2}$  $\mathbf{K}_{i} = [\mathbf{M}_{i}^{\bullet\bullet}] \cdot [\mathbf{e}']^{2} \cdot \mathbf{p}_{\mathbf{X}_{2}}^{1/2}$  $[\mathbf{e'}] = \frac{K_i^{1/2}}{K_n^{1/4}} p_{X_2}^{-1/4}$  $\left[h^{\bullet}\right] = \frac{K_{v}^{1/2}}{K_{v}^{1/4}} p_{X_{2}}^{1/4}$ 

#### RÓWNOWAGI DEFEKTOWE W POBLIŻU SKŁADU STECHIOMETRYCZNEGO (MX) – skład stechiometryczny

Związek wykazuje skład ściśle stechiometryczny gdy jednocześnie:

$$[V_{M}''] = [M_{i}^{\bullet \bullet}]$$
$$[e'] = [h^{\bullet}]$$
$$\downarrow$$
$$p_{X_{2}} = \frac{K_{i}}{K_{v}}$$

#### Schemat zdefektowania w związkach o składzie zbliżonym do stechiometrycznego – przewaga samoistnego zdefektowania elektronowego



#### Schemat zdefektowania w związkach o składzie zbliżonym do stechiometrycznego – przewaga samoistnego zdefektowania jonowego



## Zależność odstępstwa od stechiometrii, y, w Fe<sub>1-y</sub>O od równowagowego ciśnienia tlenu dla szeregu temperatur



<u>Uwaga</u>:

- odstępstwo od stechiometrii osiąga 16%,
- zależność y = t(p) nie jest prostoliniowa,
- odstępstwo od stechiometrii maleje ze wzrostem temperatury przy stałym ciśnieniu tlenu.



Zastosowanie dyfrakcji powolnych elektronów, spektroskopii Mössbauera i mikroskopii elektronowej o wysokiej zdolności rozdzielczej pozwoliło wykazać, że defekty punktowe oddziaływują ze sobą tworząc skupiska defektów, ulegające uporządkowaniu w bliskim lub dalekim zasięgu.

S. Mrowec, "Defect and transport properties of wustite. Historical approach" w Metalurgia i Odlewnictwo, tom 13, str. 7-27. PWN, Warszawa 1987.

# Graniczne typy zdefektowania struktury krystalicznej tlenków metali przejściowych

| Kolejne<br>przypadki<br>graniczne | Charakter zdefektowania                      | Stężenie<br>defektów<br>punktowych<br>[% mol] | Przykłady                                                                                         |
|-----------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1                                 | Statystycznie rozmieszczone defekty          | 0 - 10 <sup>-1</sup>                          | Ni <sub>1-y</sub> O, Cu <sub>2-y</sub> O,                                                         |
|                                   | punktowe                                     |                                               | CdO <sub>1-y</sub> , Zn <sub>1+y</sub> O                                                          |
| 2                                 | Quasi-nieuporządkowane defekty punktowe      | 10 <sup>-1</sup> - 10                         | Co <sub>1-y</sub> O, Ti <sub>1-y</sub> O, TiO <sub>1+y</sub>                                      |
|                                   |                                              |                                               | V <sub>1-y</sub> O, VO <sub>1+y</sub>                                                             |
| 3                                 | Kompleksy defektowe, mikrodomeny             | 10 <sup>-1</sup> - 10                         | Fe <sub>1-y</sub> O, UO <sub>2+y</sub>                                                            |
| 4                                 | Powstawanie faz pośrednich                   |                                               |                                                                                                   |
|                                   | w wyniku nadstruktury defektowej (asymilacja | 10 <sup>-1</sup> - 10                         | Ceo <sub>2-y</sub> , PrO <sub>2-y</sub>                                                           |
|                                   | defektów punktowych)                         |                                               |                                                                                                   |
| 5                                 | Powstawanie faz pośrednich                   | 0 - 10 <sup>-1</sup>                          | WO <sub>3-γ</sub> , MoO <sub>3-γ</sub> , Nb <sub>2</sub> O <sub>5-γ</sub> ,<br>TiO <sub>2-γ</sub> |
|                                   | w wyniku struktur ścinania (eliminacja       |                                               |                                                                                                   |
|                                   | defektów punktowych)                         |                                               |                                                                                                   |

Mechanizmy powstawania defektów złożonych:

- proces porządkowania się defektów punktowych, prowadzący do powstania nadstruktury, w której defekty są zasymilowane jako integralne elementy sieci krystalicznej
- eliminacja defektów punktowych w wyniku procesu krystalograficznego procesu ścinania.

#### Schemat hipotetycznej sieci zawierającej 25% defektów



- a) prosta sieć regularna zawierająca 25% wakancji,
- b) prosta sieć diamentu zawierająca 25% międzywęźli

#### Kompleks defektowy typu 2:1 zaproponowany przez Rotha



Kompleks Rotha tworzą 2 wakancje kationowe i 1 kation międzywęzłowy. Utworzeniu każdej wakancji w wyniku reakcji z fazą gazową, prowadzącej do powstania niestechiometrii, towarzyszy powstanie 1 kationu międzywęzłowego i 1 wakancji kationowej, zgodnie ze zdefektowaniem typu Frenkla.

#### Kompleks defektowy zaproponowany przez Kocha i Cohena



 $\Diamond$ 

Empty cation positions Luki kationowe

Tetrahedral iron atoms Atomy żelaza w położeniu tetraedrycznym

Oxygen Tlen

niższych temperaturach kompleksy Rotha W skupiają się i wraz z dodatkowymi wakancjami tworzą większe zespoły nazywane klasterami Kocha-Cohena. W obrębie klasteru brak jest żelaza w prawidłowych pozycjach ionów wezłowych (oktaedrycznych), a 4 kationy trójdodatnie otoczone 14 anionami sa dwuujemnymi. Klaster wykazuje zatem efektywny ujemny ładunek elektryczny względem sieci. W konsekwencji iest on otoczony dziurami elektronowymi (trójdodatnimi jonami żelaza w położeniach oktaedrycznych), kompensującymi ujemny ładunek elektryczny klastera.

#### Kompleks defektowy zaproponowany przez Cheethama i Catlowa





Empty cation positions Luki kationowe



Tetrahedral iron atoms Atomy żelaza w położeniu tetraedrycznym

Oxygen Tlen Zgodnie z wynikami badań Cheethama w FeO, w pobliżu granicy faz Fe/FeO, stosunek wakancji kationowych do kationów międzywęzłowych wynosi ok. 4:1. Wg symulacji komputerowych przeprowadzonych przez Catlowa dominujacymi defektami w tym zakresie są kompleksy defektowe, w których jeden kation międzywęzłowy otoczony jest czterema wakancjami kationowymi. Kompleks defektowy Cheethama-Catlowa może być traktowany jako element strukturalny kompleksu Kocha-Cohena.

#### Schemat agregacji kompleksów Cheethama-Catlowa



Kompleks defektowy 16:5 stanowi element struktury krystalograficznej  $Fe_3O_4$  i może być traktowany jako zarodek fazy  $Fe_3O_4$  w obrębie FeO.

#### Kompleks defektowy zaproponowany przez Willisa

Schemat kompleksu Wilisa typu 2:1:2



Najstarsze badania struktury defektowej w UO<sub>2+y</sub> wskazywały, iż defekty punktowe w tym związku, tj. międzywęzłowe aniony są rozmieszczone statystycznie w sieci krystalicznej. Willis wykazał jednak, że międzywęzłowy jon tlenu powoduje w swoim najbliższym otoczeniu deformację sieci, polegającą na wyparciu dwóch jonów tlenu ze swoich pozycji węzłowych do przestrzeni międzywęzłowych, w wyniku czego powstają dwie wakancje tlenowe. Defekty te tworzą kompleks.

#### Przykład złożonego kompleksu Willisa



### Powstawanie defektów złożonych w procesie krystalograficznego ścinania



Schematy struktur z oktaedrem tlenowym, jako podstawowym elementem:

- b) TiO<sub>2</sub>
- c) Ti<sub>2</sub>O<sub>3</sub>

Schemat procesu powstawania płaszczyzny krystalograficznego ścinania.

## Schematy struktur z oktaedrem tlenowym, jako podstawowym elementem sieci krystalicznej

Podstawowym elementem sieci krystalicznej jest oktaedr MO<sub>6</sub>

- a) oktaedry te w tlenkach ReO<sub>3</sub>, WO<sub>3</sub>, MoO<sub>3</sub>, łączą się w trójwymiarową sieć przestrzenną narożami
- b) oktaedry w tlenkach TiO<sub>2</sub>, VO<sub>2</sub>, połączone są krawędziami w pasma, które powiązane są z sobą narożami oktaedrów
- c) oktaedry w tlenkach Ti<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub> stykają się ze sobą wspólnymi ścianami



#### Przykład płaszczyzn ścinania w słabo zredukowanym rutylu



# KONIEC